散射变换是一种基于小波的多层转换,最初是作为卷积神经网络(CNN)的模型引入的,它在我们对这些网络稳定性和不变性属性的理解中发挥了基础作用。随后,人们普遍兴趣将CNN的成功扩展到具有非欧盟结构的数据集,例如图形和歧管,从而导致了几何深度学习的新兴领域。为了提高我们对这个新领域中使用的体系结构的理解,几篇论文提出了对非欧几里得数据结构(如无方向的图形和紧凑的Riemannian歧管)的散射转换的概括。在本文中,我们介绍了一个通用的统一模型,用于测量空间上的几何散射。我们提出的框架包括以前的几何散射作品作为特殊情况,但也适用于更通用的设置,例如有向图,签名图和带边界的歧管。我们提出了一个新标准,该标准可以识别哪些有用表示应该不变的组,并表明该标准足以确保散射变换具有理想的稳定性和不变性属性。此外,我们考虑从随机采样未知歧管获得的有限度量空间。我们提出了两种构造数据驱动图的方法,在该图上相关的图形散射转换近似于基础歧管上的散射变换。此外,我们使用基于扩散图的方法来证明这些近似值之一的收敛速率的定量估计值,因为样品点的数量趋向于无穷大。最后,我们在球形图像,有向图和高维单细胞数据上展示了方法的实用性。
translated by 谷歌翻译
歧管散射变换是用于在Riemannian歧管上定义的数据的深度提取器。它是将类似卷积神经网络的操作员扩展到一般流形的第一个例子之一。该模型的初始工作主要集中在其理论稳定性和不变性属性上,但没有为其数值实现提供方法,除非具有预定义的网格的二维表面。在这项工作中,我们根据扩散图的理论提出实用方案,以实现在自然主义系统(例如单细胞遗传学)中产生的流形散射转换,其中数据是一个高度点云,该云是模仿躺在上面的高维点云。低维歧管。我们证明我们的方法对于信号分类和多种分类任务有效。
translated by 谷歌翻译
细胞因子释放综合征(CRS),也称为细胞因子风暴,是嵌合抗原受体疗法的最大程度不良反应之一,在癌症治疗中表现出了有希望的结果。当出现时,可以通过分析特异性细胞因子和趋化因子谱的分析来识别CR,这些因子和趋化因子谱倾向于在患者之间表现出相似性。在本文中,我们使用机器学习算法利用了这些相似性,并着手开拓元观看知识的方法,以基于特定的细胞因子峰浓度和先前临床研究的证据来识别CRS。我们认为,这样的方法可以通过将临床医生与过去临床研究的CR知识相匹配,以分析可疑的细胞因子谱,以Swift CRS诊断的最终目的。在使用Real-World CRS临床数据评估期间,我们强调了我们提出的产生可解释结果方法的潜力,除了有效地识别细胞因子风暴的发作。
translated by 谷歌翻译
我们提出了一个隐式神经表示,以学习运动运动运动的时空空间。与以前代表运动为离散顺序样本的工作不同,我们建议将广泛的运动空间随着时间的流逝表达为连续函数,因此名称为神经运动场(NEMF)。具体来说,我们使用神经网络来学习此功能,以用于杂项运动集,该动作旨在以时间坐标为$ t $的生成模型和用于控制样式的随机矢量$ z $。然后,将模型作为变异自动编码器(VAE)进行训练,并带有运动编码器来采样潜在空间。我们使用多样化的人类运动数据集和四倍的数据集训练模型,以证明其多功能性,并最终将其部署为通用运动,然后再解决任务 - 静态问题,并在不同的运动生成和编辑应用中显示出优势,例如运动插值,例如运动插值,例如 - 上映和重新散布。可以在我们的项目页面上找到更多详细信息:https://cs.yale.edu/homes/che/projects/nemf/
translated by 谷歌翻译
人工智能(AI)系统在接下来的几十年中有很大的希望可以改善医疗保健。具体而言,利用多个数据源和输入模式的AI系统有望成为一种可行的方法,可以在广泛的应用程序中提供更准确的结果和可部署的管道。在这项工作中,我们提出并评估一个统一的医学中的整体AI(HAIM)框架,以促进利用多模式输入的AI系统的生成和测试。我们的方法使用可通用的数据预处理和机器学习建模阶段,可以很容易地适应医疗保健环境中的研究和部署。我们通过训练和表征基于MIMIC-IV-MM的14,324个独立模型来评估我们的HAIM框架,该模型是一种多模式临床数据库(n = 34,537个样本),其中包含7,279个独特的住院和6,485名患者,涵盖了4个数据模态的所有可能输入组合(即,所有可能的输入组合)表格,时间序列,文本和图像),11个独特的数据源和12个预测任务。我们表明,该框架可以始终如一地生产出在各种医疗保健示范中超过相似的单源方法的模型(乘以6-33%),包括10种不同的胸部病理学诊断,以及休息时间和48小时的死亡率预测。我们还使用Shapley值量化了每种模式和数据源的贡献,这证明了数据类型重要性的异质性以及在不同医疗保健相关的任务中多模式输入的必要性。我们的整体医学AI(HAIM)框架的可推广性能和灵活性可以为未来的临床和运营医疗环境中的多模式预测系统提供有希望的途径。
translated by 谷歌翻译
对于移动机器人,移动机械手和自治车辆,以安全地在街道和仓库等人口众多的地方驾驶,人类观察者必须能够理解他们的导航意图。启用这种理解的一种方法是通过在周围环境上的投影来可视化这一意图。但尽管存在此类预测的有效性,但不存在具有集成硬件设置的开放式代码库。在这项工作中,我们详细介绍了这种定向预测的有效性的经验证据,并使用广泛使用的机器人操作系统(ROS)和RVIZ在C ++中分享了这种预测的机器人无关的实施。此外,我们使用获取机器人演示用于部署此软件的硬件配置,并简要概括激励此配置的全尺寸用户学习。代码,配置文件(Roslaunch和RVIZ文件)以及文档在Github上自由地提供HTTPS://github.com/umhan35/Arrow_Projection。
translated by 谷歌翻译
我们为学习限制建立了混合整数优化的广泛方法论基础。我们提出了一种用于数据驱动决策的端到端管道,其中使用机器学习直接从数据中学习限制和目标,并且培训的模型嵌入在优化配方中。我们利用许多机器学习方法的混合整数优化 - 焦点,包括线性模型,决策树,集合和多层的感知。对多种方法的考虑允许我们捕获决策,上下文变量和结果之间的各种潜在关系。我们还使用观察结果的凸船体来表征决策信任区域,以确保可信的建议并避免推断。我们有效地使用列生成和聚类来纳入这个表示。结合域驱动的约束和客观术语,嵌入式模型和信任区域定义了处方生成的混合整数优化问题。我们将此框架实施为从业者的Python包(OptiCl)。我们展示了化疗优化和世界食物计划规划中的方法。案例研究说明了在生成高质量处方的框架中的框架,由信任区域添加的值,加入多个机器学习方法以及包含多个学习约束的框架。
translated by 谷歌翻译
大多数人机机器人的研究侧重于舒适高效的HRI的发展;很少有过切换失败。如果在交互开始时发生故障,则会防止整个切换过程并销毁信任。在这里,我们分析了人们在机器人不能拥有对象的切换方案中想要解释的基本原因。结果表明,参与者对其要求设定了期望,并且机器人应该在失败后提供解释而不是非口头线索。参与者还预期,他们的切换请求可以由机器人完成,并且如果不是,则希望能够基于所提供的解释来修复机器人或改变请求。
translated by 谷歌翻译
Reinforcement learning holds the promise of enabling autonomous robots to learn large repertoires of behavioral skills with minimal human intervention. However, robotic applications of reinforcement learning often compromise the autonomy of the learning process in favor of achieving training times that are practical for real physical systems. This typically involves introducing hand-engineered policy representations and human-supplied demonstrations. Deep reinforcement learning alleviates this limitation by training general-purpose neural network policies, but applications of direct deep reinforcement learning algorithms have so far been restricted to simulated settings and relatively simple tasks, due to their apparent high sample complexity. In this paper, we demonstrate that a recent deep reinforcement learning algorithm based on offpolicy training of deep Q-functions can scale to complex 3D manipulation tasks and can learn deep neural network policies efficiently enough to train on real physical robots. We demonstrate that the training times can be further reduced by parallelizing the algorithm across multiple robots which pool their policy updates asynchronously. Our experimental evaluation shows that our method can learn a variety of 3D manipulation skills in simulation and a complex door opening skill on real robots without any prior demonstrations or manually designed representations.
translated by 谷歌翻译